
.*,

. 31) Electromagnetic Monte Carlo I’article- in-Cdl Si]nulations

on MIMI) Paralld Co]nputxrs

J . Wang: I’. C. I,icwcr~ and E. IIuangt

Jet Propulsion Laboratory

California. institute of ‘1’cchnology

Abstract

A three-dirnensionid electromagnetic particle-in-cell
code with Monte Carlo collision (PICMCC) bw been
developed for MIMI) paratlel supercomputers. This
code uses a standard relativistic leapfrog scheme incor-
porated with Monte Carlo calculations to push plasma
particles and to catculate collisions.t effects on particle
orbits. A locat finite-difference time-domain method is
used to update the self-consistent electromagnetic fields.
The code is implemented using the Generat Coxlcurrent
PIC (GCPIC) algorithm which uses a domain decon~-
position to divide the computation among the proces-
sors. Particles must be exchanged between processors
as they move among subdomains. We evatuate the per-
formance of this code using a 512-processor Intel ‘l’ouch-
stone Delta, a 512-processor Intel Paragon, and a 256-
processor Cray 13D. It is shown that our code runs
with a high parallel efficiency of > 9570 for large size
problems. We have run PIC-MCC simulations using
162 million to 361 million particles with several million
collisions per time step. For these large scale simula-
tions, the particle push time achieved is in the range
of 100-115 nsecs/particle/tirr~e step, and the collision
catcrdation time in the range of a few hundreds nsecs
per collision. Compared with the performance on a sin-
gle CPU Cray C90, this represents a factor of 70-80
speedup.

J. Introduction

Computer particle simulation has become a stan-
dard research tool for the study of non-linear kinetic

“ Member ‘lkchnical Staff , Advanctd P r o p u l s i o n , Member
AIAA

t Member ‘lkchnical Staff, Space Physicg
t Member ‘1’echnicrd Staff, Su percomputiug

Copyright (31994 by authors. }’ublished by American Insti-
tute of Acmnauticn and Astrona”tic~, IN C,. with permission.

proble]ns in s})ace and laboratory plasma physics re-
searctl. Collisionless pl~ma plle~lomena may be studied
using a particle-in-cell (PIC) code. A PIC code models
a pl~sma M hundreds of thousands of test particles and
follows the evolution of the orljits of individual test par-
ticles in the self-consistent electromagnetic fields[l, 2].
Each time step in a I’IC code consists of two major
stages: t}le particle push to update the particle orbits
and calculate the new charge and/or current density,
and the field solve to update the electromagnetic fields.
Since the particles earl be located anywhere within the
simulation do]oairr but tile lnacroscopic field quanti-
ties are ciefined only on discrete grid points, the par-
~icie push uses a “gather” stelj to interpolate fields from
grid points to particle positions and a “scatter” step
to deposit the charge/current of each particle to grid
points. To study those problems that involve collisions
between plM]Jms and ueutral atoms, a particle-in-cell
with Monte Carlo collision (} ’IC-MCC) can be used. In
a PIC-MCC code, a Monte Carlo scheme is incorporated
into the particle push stage of a PIC code to calculate
the collisional effect 01[plamoa particle orbits[3].

Wliile the particle simulation method allows one to
study the plasma phenomena from the very fundarnen-
tat level, the scope of the physics that can be resolved
in a simulation study critically depends on the com-
putational power. The coroputationat tin~e/cost and
computer melnory size restricts the time state, spatiat
scale, and nu]nber of particles that can be used in a
simulation. T’lle cost of runrliug three dimensional par-
ticle simulatic)ns on existing sequential supercomputers
limits the proldems which can be addressed.

Recent advances in mzssively parallel supercon]put-
ers have provided computational possibilities that were
previously not couceival)le. To illustrate the state-of-
the-art of parallel s{ll>ercc,llll,lltem, in Table 1 we sunl-
marize the hardwares of the three MIMI) (Multiple In-

structio~l Multil)le I)ata) parallel supercomputers op

1

‘, .,.

crating at Caltcch and the Jet l’repulsion Laboratory.
‘I%e Intel ‘1’omhstone IJclta has 512 nuulerical n o d e s
sach with a n~emory of 4 MwOr~s and a peak speed of 60
double-precision (75 single-precision) Mflops. ‘1’he Intel
l’aragon has 512 numerical nodes each with a memory of
8 Mwords and a peak speed of 75 double-precision (100
single-precision) Mflops. Tile Cray T31J at JI’I/ has 2L6
numerical nodes each with a memory of 8 Mwords and
a peak speed of 150 Mflops. h e n c e , the total nlcnl-

ory size for Delta, Paragon, and Cray T31) are 2.048
Gwords, 4.596 Gwords, and 2.048 Gwords respectively
and the total peak speed 30.7 Gflops, 38.4 Gflops, and
38.4 Gflops respectively.

In a previous study, we have developed a three-
dimensioual electromagnetic PIC code for MIL4D par-
allel supercomputers[4]. l’hat code uses a relativistic
particle push, a local finite-difference time-domain so-
lution to the full Maxwell’s equations, and the General
Concurrent PIC algorithm (GCPIC) which uses a do-
main decomposition to divide the computation among
the processors[5]. The 3D EM PIC code has been imple-
mented on the 512-processor Intel Delta, and has proven
to be very efficient. (The efficiency is >95 YO for prob-
lems with ~ 2 X 105 particles/processor[4].)

In this paper, we extend the previous work to a 31)
EM PIC-MCC code and implement this code on a 512-
processor Delta, a 51 2-processor Paragon, ancl a 256-
processor Cray ‘1’3D. In a sitnulation study, it is neces-
sary to obtain benchmark information such a.. the com-
puting speed and the simulation scale so one can decide
the feasibility and effectiveness of applying PIC-MCC
in a particular application. Ilence, another objective of
this study is to use the resulting 3D EM PIC-MCC code
as a tool to benchmark the performances of the I)elta,
Paragon, and T3D for very-large-scale PIC-MCC simu-
lations.

This paper is organized as follows: Section 2 dis-
cusses the algorithm used in our 31) EM PIC-MCC code
and the parallel irt~l~lexl~erltatio~~; Section 3 analyzes the
code performances on the Delta, Paragon, and Cray
T3D; and Section 4 contains a summary and conclu-
sions.

2. A Parallel 31) Electromagnetic PIC-MCC Code

The Algorithm

An electromag]letic l’IC code solves Maxwell’s equa-
tions for the macroscopic field and Newton’s second law
for individual particle trajectories:

V.ti. p (1)

oi~
%- ‘ --CV xl?

dy)l v..-—fit ,F=g(fi.ttix!j, :=p (5)

(4)

w}lerc relativistic effects arc included in eq(5) (~ =-
1/<1 -- V2/c2). To include collisions between plasma
particles and neutral atolns, one may include Monte
Carlo collsion calculation into a PIC code, i.e. a PIC-
MCC code (See Ref13] for a review on PIC-MCC code).

In our code, the electromagnetic field equations
are solved using a charge- ccmserving finite-difference
leapfrogging scheme, which was used by Sandia National
Laboratories i!] the Quicksilver code [7] and by Ilune-
mm et ~~n the Tristan code [8]. We choose this method >.’
(which is a “local” method) over transform methods
(whic}l are “global” methods) because a method that
updates the field purely from the local data runs much
more efficiently in parallel [~]. In this scheme, one ob-
tains the current flux through every cell surface within
a time step cft, dt~-n+ 1)2 using a rigorous charge conser-
vation method for current deposit, which is described in
detail in [8]. Next, the electromagnetic field is updated
locally by finite-difference lca~,frogging in time:

[1i“+] -- ~“ == dt c v xi;”+ ’12 – dtJ-n+ 112 (6)

]jn41/2 _ _ jn-1/~ , _ dt Cv ~jjn
[] (7)

where the superscripts n + 1/2 and n + 1 represent the
time level. l}lis schenie requires the use of a fully stag-
gered grid nwsh systdm (the Yee lattice [9]) in which
~ and ~dt arc defined at midpoints of cell-edges while
the i; components are defined at the midpoints of the
cell-surfaces.

The trajectory of each particle, if no collision has
occured, is integrated using a standard time-centering
leapfrog sche)~,e discussed il, [1]. I,et ii = ~~, and the
leapfrog schen,e for eel(5) is written M

<r, + 1/2
~n+ 1/2 _ tin- 1/2 = @}; r, + _ _ _ _ _ _ +- lin-’/2 q fin

2-f’”
x — —]

m m c

~;r,+ 1/2
-n+ 1z - F’ = - - - - - d t~n.l 1/2

(8)

(9)

In eq(8), fi and l; are inte~po]atcd from the grids to the
particle positions.

2

‘, . . .

The. code kcqM track of the collision probability of
ea~}, ~largccl particle. l’l,e ~Jrobability that a cl,argcd
particle suffers a collision witlliu time t is given by

J
f

}’(t) == 1- exp(- uj(t)dt)
0

(10)

wllerc Vj is the collision frcqllcncy for the jth collisional
processes. lIence, at each time step, for eacil particle,
the following collision calculation is performed:
a) Calculate the accumulated probability: Plot : 1 -
ezp-- XVjd~).

b) Chose a random number Pra~ to decide whether a
collision has occured, and the collision type.
c) If a collision has occured, calculate the new velocity
of the particle after the collision from the equations for
conservation of maw, momentum, and energy[3].

Iml>lementation on MIMI) Parallel Computers

The code is implemented using the General Con-
current F’IC (GCHC) algorithm developed by Liewer
and Decyk[5]. The GCPIC algorithm is designed to
make the most cornputationally intensive portion of a
particle code, the particle computation, run efhcicntly
on MIMD parallel computers. In general, the GCPIC
algorithm uses two spatial decompositions of the physi-
cal domain to divide the computation efilcicntly among
parallel processors: a primary decomposition to opti-
mize the parallel particle push computations (i.e., par-
ticle move and current deposit) and a secondary de-
composition to optimize the parallel field computations
(i.e., field update). In the primary decom}~osition, each
processor is assigned a subdomain and all the parti-
cles and grid points in it. Whcu a particle moves from
one subdomain to another, it must be pawed to the ap-
propriate processors, which requires interprocessor conl-
munication. The primary decomposition is chosen so
that both interpolations between the particles and the
grids (gather/scatter) can be done JocaJly, e.g., with
no interprocessor communication. To ensure that the
gather/scatter can be performed locally, each proces-
sor stores guard CCJIS, e.g., neighboring grid points sur-
rounding a processor’s subdornairr which belong to an-
other processor’s subdomairr. Fig. 1 illustrates a 2-
dirnensioual subdomairr. lnterprocessor communication
is necessary to exchange guard cell information.

For load balance, the primary decomposition subdo-
mains should have roughly the same number of particles
and the secondary decomposition subdomains should
have the same number of grid points. When the grid
is regular and the particle distribution is uniform, eq~lal
volume subdomaius are optimum for both the push and
field stages. Thus, for this case, the l>rinlary and scc-
oudary decompositions are identical.

In our code, the Monte Carlo collision portion of the
code is colnl>let{ly local. I1ellcc, tllc parallizatiou of ollr
PIC-MCC code is identical to that of our PIC code dis-
cussed in Itef14]. II) the code, tl]c computation dolnair)
can be partitiollcct iuto 1-, 2-, or 3-dimensional subdo-
mains (“slal~s”, “rods”, or “mlbcs”) [6]. Fig. 2 S}1OWS
tile flow, chart of our parallel 31) electromagnetic I’l C-
hfCC code. l’I, c main 100}, llSCS seven major subrow
tines. Particle Move, Monte Carlo Colli8ion, Current
Depo.$it, and Fic(d Update for l; and 1; (represented by
the rounded blocks in Fig. 2) are the essential conlpu-
tation t,locks ill a sequential I~;M I’IC-MCC code. On a
parallel computer, each processor executes these opera-
tions independently using its c,wn data arrays. The com-
putations are linked together through message-passing
and global coll}municatio]ls. Tlic code has three nla-
jor message-passing subroutines: l’article Trade, Guard
Cell Summation,, and Guard Cell Ezchange (represented
by the five rectangular blocks). A detailed discussion
on these message-passing sut)routines can be found in
Ref14]. The global boundary conditions are also in~-
posed in these three subroutines to avoid additional
loops over grid points and particles. Currently our code
uses periodic boundary conditions.

On the Delta and Paragon, we implement the
rnessage-pising based on the l’;xpress Cubix library.
On the Cray I’3D, we irnplelncnt the message-passing
using PVM.

3. Performance A1lalvsis

To evaluate the performa~)ce of our parallel 3D EM
PIC-MCC code, we use the following simple test case:
two electron beams are set to counter stream in a back-
ground of fixed ions and neutrals. The electrons within
each beam follow a Maxwellian distribution with ther-
mal velocity Vt == 0.05c, and t}lc drifting velocities are
taken to be vd = *0.4c. Th~ electrons beams interact
with the neutral background through collisions. For the
purpose of performance analysis, we want to keep the
total number of plasma particles in the system constant.
Hence, in this test case we o]Lly include elastic scatter-
ing in the MCC calculation, while other collisions are
turned off.

To analyze the code performance, we measure t be
total code time per tiInc step loop T~Of as well as the
times spent by eaclr of the seven major subroutines for a
series of runs.),et us denote ~\,,O”C , ~~vrr,n~, ~)l~”p&~,,
Ttmd., &.vt, ~~cfI, and T.0]1 M tile time spent by par-
ticze]nove, cut rent deposit, field update, particle trade,
curret!t guard cell summa tioti, jield guard cell ezchange,

3

“

. and Monte Carlo co)li.$lon respectively. N_om the nlea-
sured subroutine times, we define the particle push time
(which includes the ti,nes on moving particles, del,osit-
“ing currents, applying boundary conditions, and related
interprocessor co:l~Tllllllicatiolls ~~ shown in Fig. 4):

~w~~h ~ ~,,,OU, ‘f ~~~odf ‘} 7~urI-c,,l ‘1 ~~c.rn (11)

and the field solve time (whic]l includes the times on
updating the ~, and]1 fields, applying boundary COII.
ditions, and related interprocessor co~ll~ll~~llicatiolls as
s}lown in Fig. 4):

. ,fie Id .
1- ~fldupdatc ‘t ~9c/I (12)

We afso define the con~nlunication/boundary condition
time for particle push as

~puahcmu ,_ ~,
g,,,,, ‘t Tirade (13)

and the total co~l~ll~tlslicatio~l /bo~l~ldary condition time
as

~cbc ~ ~
irad, + ~jc,m + Tgcll (14)

If only one processor is used, T’*’(1) is simply the time
spent on the global boundary conditions. When multip-
le processors are used, Tcbc(NP > 1) is the sum of the
time spent by the code on communications and global
boundary conditions. When the number of processors
used is much larger then one, T ‘b’ is dominated by the
“pure’’i nterprocessor comrnunicationand hence, it is a
good measure of the parallel communication cost [4].

As Table 1 shows, the Delta, Paragon, and Cray
T3D have different memory sizes. 10 benchmark Delta,
Paragon, and T3D, we compare the run times of the
3D EM PIC-MCC code on these computers in three
ways: 1) same problem size per node runs, 2) same total
size runs, and 3) maximum problem size runs. In same
problem size per node runs, we load the same problem on
each individual processor. In same total size runs, the
total problem size is the same on all three computers. In
mazimum problem runs, we run the maximum problem
allowed by the memory size of each computer. In all
c~ses, we also compare the performance as a function
of the processors used. Since all calculations are carried
out using the default word length (i.e. 8 bytes word
On ‘T31); 4 bytes word on Delta and Paragon), the T31)
calculation doubles the precision of that on Delta and
Paragon.

Same Problem Size Per Node Runs

We first compare the performances of I)elta,
I’aragon, and 1’31) when each conlputer<s;loaded the
same problem. In each run series, we keep the problem
size on each individual processor fixed while increas-
ing the total rlllrnbcr of processors. IIence, the total

probleln size is proportional to tile numhcr of proces.
sors used.

A:i important mea-sure of ttlc performance on a coll-
currellt computer is tlie para.llcl efficiency c which nlea-
sures the effects of communication overhead and load
imbalance [1 O]. If there were no communications in-
volved and the processor loads were perfectly balanced,
the parallel efficiency would I)e c : IOOVO. In tilis paper
we shall fc~cus only on the eflcct due to communication
overhead. The simulation runs ~lsed in this paper all
have near-perfect load balance because the particle dis-
tributions in t}, ese runs are nearly uniforln. The parallel
efficiency here is defined M

~(~) .- _?j~f(’)
Tto, (N)N

(15)

where “TfO{(iV) is the total loop time elapsed on a parallel
computer usi~lg iV nodes.

We load the following prot)leni onto Delta, Paragon,
and 2’31>: each processor has a cubic subdornain of 16 x
16x 16 cells and 3.16x 10s particles (~ 77 particles/cell).
This problem is scaled up in three dimensions. When
this ~moblern is loaded on 256 nodes, the total problem
size becomes 64 x 128x 128 (1 .05 million) cells and ahout
80.8 million particles. Wbe), the problem is loaded on
all 512 nodes of Delta and ~’aragon, The total problem
is then 128 x 1’28 x 128 (2.1 nlillion) cells and 162 million
particles.

‘1’he parallel efficiencies of our code on ‘1’3D,
Paragon, and I)elta are shown in Fig. 3. M a function
of the number of processors NP. The results show that
a high parallel eff~cie~icy of c > 95~0 hzxs been achieved
on all three parallel cornputcrs. Since we have perfect
load balance for the test runs, the efficiency is degraded
only by interprocessor cornnlunications.

Fig. 4 shows in detail the times spent by different
portions of the code. In Fig. 4a, we compare the total
time and the total communication time. When only 1
node is used, ‘Tcbc(l) consists of only the global bound-
ary condition time. \vtleli tl,e number of processors is
NP > 1, the Jnajor part of Tcbc is for “pure” parallel
cornrnunications. We find that Tcbc takes less then 4!70

of T~Of. Not surprisirr~ly, when the number of processors
used is nmch larger than 1, c(iVP >> 1) m 1-- TCbc/Tt O{.

Ir, Fig. 4b, we plot the particle push time Tp’”h, field
solve time Tf’”d, and ttle Monte Carlo collision time
ljOtl. In Figs. 4C and 4d, we compare the computation
time ancl con)nwulicatio] l/boundary condition time for
the ~,article push and the field solve respectively. Since
tl]e Monte Carlo collision piirt of the code is completely

4

%

.k
b.

x

. . .

local, there is no col~~lI~lll]icatioll /lJo~ll]dary condition
time involVed.

AS Fig 4h shows, among the three portions of the
code, the particle push is tlie most expansive part as
expected. The field solve represents a negligible small
fraction of the total time: Tf “’*d/T,O, < l%. ‘1’he time
spent by the Monte Carlo collision is between TP”’h and
Tfietd

The particle push and field(solve stage have been

ianalysed in detail in Wang et at, 4]. Since each proces-
sor hrs equal number of grid cells and approximately
equal number of particles, the times spent by “produc-
tive” computations, pariicle moue, current deposit, and
field update are independent of the number of proces-
sors used. The communication/boundary condition
times Ti,adc, Tgc,m, and Tgclr increases somewhat as
the node number increases. (For simulations performed
here, the increase is due to communication network
contention[4].) However, since they are muc}l less than
the time spent by particle moue and current deposit,
Tp”’h stws ~ constant as the number of processors is

increased. IIence, the communication overbead only has
a very small effect on the overall performance, In or-
der to achieve a high efficiency on paralle! computers,
the problem size on each processor nee~, to be large
enough. Wang et a/~hM shown that, when using 256
to 512 processors, the PIC part of the code can achieve
a parallel efficiency c ~ 9570 when the number of par-
ticles on each processor is Z 2 x 1 05. Even for small
problems with only N 5 x 103 particles/processor, the
PIC part still has a parallel efficiency of c - 76% [4].

The Monte Carlo collision part of the c de is conl-(\?\
pletely local. Hence, a PICMCC code has ~ even better
parallel efficiency than a PIC code. The Monte Carlo
collision time Tcorf depends on the collision frequency
and time step. The collision frequency and time step
used for this run are of typical values used in practi-
cal applications: v = 0.1 and dt =- 0.125. lhis gives
a collision probability P =) – ezp(–vdt) c~ 0.02, i.e.
about 2 ~0 of the totat particles undergoes a collision
within each time step. For P N 270, we find T,~H
is more than an order of magnitude less than TP”’h.
(Tco,,/l’p””h w 770 on Delta, T.. H/Tp”’h - 6% on
Paragon, and Tcoll/Tpu’h N 970 on T3D.) We have run
other simulations with P w 10~0. Even for such a high
collision probability, we find Tcofl is still only a fraction
of Tp”’h (TcO1,/TPu’h ~ 20%).

‘he timing results plotted in l’ig.4 reflect the fact
that the Cray T3D has a faster CPU and nrtwork com-
munication. For computations, even though the T3D
does the calculation with 8-byte words, the speed of our
code on the T31) is about 2.05 times f~stm than tlkat

of the Paragmi, and about 2.4 times fmter than that
of the Delta. For intcrprocessor commllnications, the
T3D is also faster (~‘ ‘cbc(1’3J))/1’Cbc(I)aragon) * 0.48,
TcbC(T31~)/7’cbC(J’arogo?l) r. 0.40) P+mn Fig. 4, we
note tl~at the ‘1’3D also has a much less communication
contention than the I)elta and }>aragon.

&+me ‘1’otal Size and hfayinnlm Size Runs— - — — . — . . — .——

We next compare the performances of Delta,
paragon, and T31) w]len each computer is loaded the
same totat size or the n~axilnum problem allowed by its
memory size. When all processors are used, we find the
maximum rnelnory size that a user’s code can occupy on
each processor is approximately: 12 Mbytes (3 Mwords)
per processo~ on Delta, 23 Mbytes (5.8 Mwords) per
processor on]bragon, and 54 Mbytes (6.7 Mwords) per
processor on T3D (note the word size on T3D is 8 bytes
while that on Delta and l>aragon is 4 bytes).

For the study of same total size runs, we consider the
following problem S]. S1 has 128 x 128 x 128 (2.1 mil-
lion) cells and 162 million ~mrticles. This is the same
problem we have run using all 512 processors of the
Delta and l’aragon in the last section. We run this
problem usi~lg all three pi~dl~l computers considered
here. On Delta and Paragon, this problem is run using
all 512 processors. The total problem is decomposed
into 8 x 8 x 8 cubic subdoxnains. Each subdomain }IM
16 x 16 x 16 cells and 3.16 x 10s particles (N 77 parti-
cles/cell). On the Delta and Paragon, the memory re-
quired to run this p~oblem on eac}l node is 11.6 Mbytes,
The total memory size is an equivalent of 5.9 Gbytes.
This is about the largest problem that one can fit onto
the Delta system. .Sitice the T3D hrM only 256 proces-
sors, to fit S1 on T3D we decompose this problem into
4 x 8 x 8 sut}domains. Bach subdomain has 32 x 16 x 16
cells and 6.32 x 10s particles.

For maximum size XUIIS, we consider the following
two problems, S2 and S3. S2 has a domain of 104 x
168 x 168 (2.9 million) cells and 225 million particles.
S2 is run ol,ly using the 7’31) (all 256 processors). Each
processor of T3D is loaded a subdomain of 26 x 21 x 21
cells and 8.8 x 105 particles (= 76.5 particles/ceH). The
memory required to run tI1is problem on each processor
of the T31) is 54 Mbytes. l’he total memory size is
an equivalent of 13.8 Gbytes. This is about the largest
pI oblem that one can fit onto the 256 processor T3D.

S3 has a domain of 168 x 168 x 168 (4.74 million)
crlls and 361.4 millio:l particles. S3 is run only u s -

ing the Paragon (all 512 processors). On the Paragon,
each processor is loaded a subdomain of 213 cells and
7.06 x 105 particles (~ 76.5 particles/cell). ‘T’he nlenl-
ory required to run this l)roblem on each processor of

5

.,

.tllc 1’aragoll is 23.6 Mbytes. The total Ill~IllOry size k

an eqliivalellt of 12.1 Gl)ytcs. This is about the largest
prol)lem that one call fit onto the 512 processor l’aragon.

in Table 2,we comparethe times spent by different
lJortions of the code. For these runs, we also list coll-
sioll times for calculation susing three difrcrent collision
probabilities P& 0.002,1’=0.02, and l’&O.095.

one of the most illl~~ortal~txl~e~sl~reof the speedof
ttle P]C portion of the code is the particle pus}l time
per particle per time step tJ’u’h, which is listed in Table
3. For S1, tJ’”’h on the three parallel computers used
are:
tJ’U’h N115 nsecs/particle/stepon 512-node I)elta.
tJ’”’~ & 101 nsecs/particle/stepon 512-node Paragon.
tPU”k N]05nsecs/particle/stepon 256-node’J’3D.
For S2 we find:
t~”’h & 100 nsecs/particle/step on 25 fLnode T31).
And for S3, we find:
tp”’h m 104 nsecs/particle/step on 512-node Paragon.

To meawre the speed of the MCC portion of the
code we use the collision time per collision: T,Olr/n,o/l.
Table 3 also lists TCO1l/nCOll for P = 0.02 (an average
of 2C70 of tot~ partickes undergo a collision during each
time step). We find TcOI~/ncOH is 420 nsecs for Delta,
294 nsecs for Paragon, and 330-361 nsecs for T3D.

In Fig. 5, we compare performance of maximum
problem runs on Delta, Paragon, and T3D as a func-
tion of the number of processors used or the “prob]em
size”. We plot the total run time per time step ljO~ when
running S1 on Delta, S2 on T3D, and S3 on Paragon,
using different number of processors. To plot these run
times on the same figure, we use a unit of “problem
size” which is defined as the size for S1 on 1 node of the
Delta computer, i.e. 3.16 x 105 partictes and 163 grid
cells. For comparison, the collision time per time step
TCOII for P e 0.02 is atso plotted. Since S3 on Paragon
h~s the largest problem size per node and S1 on Delta
has the smatlest problem size per node, the S3 Paragon
time is the higb~?t and the S1 Delta time is the low-

4 est. Fig.5 sho&’ TtOt sta~almost constant M both the
tproblem size an processor number are increased. lhis

indicates a high parallel efficiency has been aciiieved on
all three machines.

Finally, we compare the performance of the code On
hfIMD parallel computers with that on a single proces-
sor Cray C90. For this study we choose one of the
largest Cray C90 available, the Cray C90 at NASA
Ames (The Von Neuman). The memory limit on tllc
NASA Ames Cray C90 is 128 Mwords (1.024 Gbytes).
lhis restricts that the largest problem we can fit on the

Cray C90 for J 77 particles/cell is 723 grid cells and
2.9 x 1 07 particles (or size :- 91.13). Other than the
I1lessage-passi]]g and ~lot,al coxl~l[~ilrlicatiox]s, the C90
version of the code is identicat to the parallel version.
l’he C90 version of the code is colnpiled using tile Cray
Fortriu] compiling system’s autolnatic vectoriTation and
o}>ti Ini7, ation. }Iowever, no xc-writing was done to op-
timize and vet tori7e the gather/scatter for the Cray.
Ilence, the code performance on Cray may not be the
best ~)erfornlal,ce one can get from a single CPU C90.

To compare the perfc,rmal,ce, we define the speedup
of the three MIMI) parallel computers M

~ ~ (mf/ .@cra ,
(T,o,/s:2c)M,Jf I,

(16)

Whe], the problem size is small, the Cray super-
computer performs Inuc}l better than the Delta and
Paragon. Colnpared to Cray C90, the speedup fac-
tor at size = 1 is Speedup N 0.12 for S2. IIowever,
as the proble)n size increases, the time spent on the

C90 increases approximately linearly on the log state.
Extrapolating the rml times on C90 to the maximum
prohlcn~q allowed by the paraHeI computer, if one had
a Cray C90 large exlough to run these problems, then
the speedup of the 51 2-processor Delta, 51 2-processor
Paragon, and the 256 processor ‘1’31) over the Cray C90

.would be SI)cIta cx [O, Sr...90~ —- 82, and S7’31) = 84
respectively.

4. Sunlmar~and Conclusions. —.

A MIMD parallel 3D electromagnetic PIC-MCC
code has been developed. ‘J’he code uses a standard
relativistic leapfrog scheme to push pl~sma particles,
a Monte Carlo scheme to calculate the collisions be-
tween plasma particles and the neutrat background, and
a rigorous chmge-conservation finite-difference method
to update electromagnetic fields. The code is par-
allelized usin~ the Generat Concurrent PIC (GCPIC)
atgorithnl[5] which uses a domain decomposition to di-
vide the coml~rrtation among tile processors. ‘he code
is implemented on the 51 2-processor Delta and Paragon
using the Exi)ress Cubix and on the 256-processor Cray
T3D using PVM. It is shown that our 3D EM PIC-MCC
code runs with a high parallel e~lciency of c > 9570 for
large size problems. We have also used the 31) PIC-
MCC code to benchmark I)elta, I’aragon, and T31).
WheIl the problem size on each processor is identical,
T3D has relatively the best performance per proces-
sor. The sizes of the maximum problems we have
run on 512-p] ocessor l>elta, 512-processor Paragon, and

6

4

Zsfj-processor 1’311 are 162 million particles(2.1 million
cells), 3 6 1 million particles(4.7 million cells), and 225
million particles(2.9 million cells) respectively. ~~~ach
prol)len) was run with several million collisions }Jer
time step. For these large scale simulations, the par-
ticle push time achieved is in the range of 100-115
nsec$/particle/tinle step, allcl the collision calculation
timefin the range of a few hundreds nsecs per colli-
sion. Compared with the performance on a single CPU
Cray c90, this represents a factor of 70-80 sp~edllp.
We find T31~ has the best performance per processor
while Paragon has the best overall performance. The
timing results we obtained indicate that t}lese MIMD
parallel supercomputers now allow certain large scale 3-
D EM PIC-MCC simulation studies be conducted, such
as simulations of plasma t}lruster plumes and Critical
Ionization Velocity Experiments in Space.

Acknowledgments

We would like to thank V. Decyk (UCI,A), S. R.
Karmesin (Caltech), and R. Diasca (Northeastern) for
nlany useful discussions. This work was carried out by
the Jet Propulsion Laboratory under contracts from US
Department of Energy through agreements with NASA.
Access to the Delta and Paragon, which is operated by
Cattech on behalf of the Concurrent Supercomputing
Consortium, was provided by NASA. Access to the Cray
T3D and Cray C90
Offlces of Mission
Space Science.

was provided by funding from NASA
to Planet Earth, Aeronautics, and

[1]

[2]

[3]

[4

References

C.K. Ilirdsall and A. Il. Langdon, Pla..ma Physics
via Computer Simulation (McGraw-I1ill, New York,
1985).

R.W. IIockney and J.W. E&stwood, Computer Sim-
ulation Using Particles (McGraw-IIill, New York,
1981).

C.K. Hirdsall, Particle-in-Cell Charged-Particle
Simulations, Plus Monte Carlo Collisions With Neu-
tral Atoms, PIC-MCC IEEE Trans. Plasma Sci-
ence, 19 (1991), 65-85.

J. Wang, P.C. I,iewer, V.K. l)ccyk, 3D Electron~ag-
netic Pliusma Particle Simulations on a Mlhfl) l’ar-
allel Co~l)puter to be pul)lislled ill Compuier l’hysics
Communications, 1 9 9 4 .

[5]

[6]

[7]

[8]

[9]

P. C. I,iewcr and V. K. l)ecyk, A General Co]]cur-
retit Algorithm for Plaslna l}article-in-C,ell Simula-
timl Codes, J. Computotiona[l)hysics, 85 (1989),
302-322.

I’.M. I.yster, }’. C. I,iewer, V. K. Decyk, and R. D.
Frrraro, Ilr,l~lel~~e~)tatit,~l and c;haracteriz,ation of a
3-D I’article-in-Cell Code on MIMI) h~assively I’ar-
allcl Slll>ercoll~l>~lters, (to be published, 1994).

QIJICKSIl ,V13R Progralnmer’s Guide, Sandia Na-
tional I,aboratories.

J . Villa.w-nor a n d () . Iluneman, Rigorous
Charge Conservation for],ocal Electromagnetic
Field Solvers, Computer Physics Communications,
69 (1992), 306-316.

K. S. Yee, Numerical Solution of Initial Doundary
Value Prol Jems Involving M axwell’s Equations in
isotropic Media, IEEE Trans. Antennas Propagat.,
14 (1966), 302-307.

[10] G. Fox, M. Johnson, G. I,yzenga, S. Otto, J.
Salmon, a], d D. Walker, Solving Problems on Con-
current Processors, VOI.I (Prentice-Hall, New Jersey,
1988)

7

~igllre Captious
—

Figllre 1: IIonlain decomposition of a 2-I) simulation
domain for 4 processors sllosing processor sul~domains

I and guard ceils (shaded).

Figure 2: Flow chart for the parallel 31) electromag-
netic 1’IC-MCC code.

Figure 3: I’arallel efficiency vs. mlmher of processors
used. (Solid line with square: 1’31). Dahed line with
circle: Paragon. I)otted line with triangle: I)elta.)

Figure 4: Timing results for same problem size runs
on Delta, Paragon, and ‘1’31). (Solid line with square:
T3D. Dashed line with circle: Paragon. Dotted line
with triangle: l)elta.)

Figure 5: ‘Tinling results for maximum problem size
runs. (Solid line with square: T3D. Dashed line with
circle: Paragon. Dotted line with triangle: Delta. DM1l
dotted line with cross: l-CPU Cray C90.)

8

Maclliue

Modcl

——
Delta

‘Prototype

l’aragon
. - —- -— —
XPS 1,38.-. —-— —

512.- — - — —
38.4———

i860 XP(2).-—-— ——
50 MHZ. - —-— —

— .—. —— —..
Cray———— —
‘1’31)———— .

Nodes 513

30.7

256—.—.—— —.. .
C: flops 38.4—.—.—— . —
CPU i860 XR DEC 21064———— . .—
Speed 40 MIIZ 150 MIIZ———— —.. .

Mflops/CPU

double precision

single precision

Mbytes/nocle

60

80

16

75

100——— —
32——-— —

16.4— - — —
iD(16x3G)——-— .

150

Total Gbytes 8.2 16.4———— ..—
31) Torus———— .—. .—2D(16X36)‘rOpology

Table 1: Comparison of the hardwares of parallel supercomputers at Caltech and JPL

]Jarticle grid cell

number number

S1 162 X 106 128 3

——
S1 162 x 106 128 3

Delta 512 18.62 0.60

Paragon 512 16.48 0.52— — . —
T3D 256 17.01 0.48——-—. —
T3D 256 22.52 0.G7

0 . 0 8 5 0 . 0 6 5 0.58 0.94 2.46
.——.. — -—.—.
0 . 0 7 3 0.065 0.63 1.16 3.41.—— — ..— —
0.083 0.039 0.88 1.44 3.75—— .__.
0.15 0.098 1.29 2.11 5.50

S1 162 X 106 1283

S2 225 X 106 104 X 1682

S3 361.4 x 1 06 1683 Paragon 512 37.15 1.17—-

Table 2: q’ime spent by clifferent portions of the code for maximum])roblcm size runs

_- —--— ———— .. —-——— ..—
particle gricl cell ~~”h/particle (nse~~) ~ T1,DI1 T~~/7tCnI~ (nsecs)

number nu xnb er

‘ s 1 162 x 106 1283

Delta Paragon

+ ‘

T3D (1’ N 0 .02) Del ta Paragon T3D—--—
115 101 105 3.21 X 106 420 294 361- — - _—.

100 4.49 x 1(F ““ 330

104 7.16 x 106 294
—-—-

S2 225 X 106 104 X 1682

S3 361.4 x 106)683

“1’able 3: l’article pU Sh tinle/particle/step and Monte Ca~lo collision til{lc/collision for maximum pr’ol>

lelu size runs

+-

. .
—
.-
. . .
— Kill—.-— —T. .

. .

. - ’ ”
— . -

—
.-

——“[1— ,..
.“— .—

—

-.

[In!
—.. .— ——. .-. — . .

. . ” — ..-L
—

.— — .

m——. -–-——.. ..—. ~. ——.— ._. _. .,.. . — .—— -?.;—,—

——. _____

7-ime Step @/e
—.— —— —— —_ __ ___ ___ ____ -.

I

I
I

I
I
I
I

I

—
Relativistic

E l e c t r o m a g n e t i c

Particle Push
hterpdate Ftdds to
%tide Postion (gathcx)

~ate X and V

Monte Carlo
Collision

\ 1

t

.— -.

~— —_ —-_ ,

“pa~ic/e Pmh “ Stage

-- –1
.——

..-.

r — _ _ _ _

\
Deposit Current
Intcrpdate %tIde
Cm-rent to &id (scatt~))

4“l - - – – – – – – – – – – – – – – – – –..––+_––_
F

I 1

I
Exchange Guard

Cells for B “Fje/d ~/ve” sta@?

I -

I !

1-1

.-

Exchange Guard
t half of B advance Cells for B

I
I

1
-—__ *

I
$

Exchange Guard
I Start Loop Cells for E
I 1

I

I
I

I

I
I
I
I

I
I
I

I

I

I

I

I

I

I

I.__. __ __ —__ ____ ____ ___ — -.. — __ __ __

1

1

2(I

.0(

(-

0.8

O.f

———. - _._— —.-.—- —-----

,. _____
-:-: ‘- - -%- —== - - - - +j.. [g _ ~,

‘-* ’----- ”’ ” --- A------- -----A

~—~—-l
—. __r..—-.__—

3 4.0 F 1
l/ogz (NP)

.0

l’i, gure 3

a) total 1001) al]cl collllll~lllicatic)[l 111(’

I 02

10

tilnc (sCc)

1

]()--1

10;

tiIlle (see)

1

lo-

total 100i) tiIt\c

total comn]unication + lIC

. - A - ‘- ” - A--- 4 - - - - - ” .(T). _(T)-<)
..-”/,’

,’
. ...----4’} PI --- (’1

___ .—- --

7 —-—–y.– ____
20

f.092(~p)
JiV_

6)
l)clta
l’al’agc)ll

‘1’31)

—- —-— —.—

.--—

particle puslI
,*.. ,-=., .,.

c1

,.* .:..., *-—

cl [’1

Monte Carlo

- A - - - - - - - - -
.fl

fid(i solve
*_

. - 0

{’}

collisicln
. ..f
..fl . ..fj

~. -----
C)--”-CJ
(’) [’J

“6

- - A
- e)

- - - A
- c)

—~—__ T_- .–. .—–– T . .—.–—
1 4.0 IX)(IZ (A’l,) hi-

l)c’lta
I)aragorl

‘1’31)

-–r

~.. .–--—
1

‘.0

0

c) })articlc l)uslI

.-102

lC

tinlc (se(’)

1

10”

time (see)

particle IIlovf2

.,., &-. ..:.

{’1

communicat ion -1 IIC

--~------ l! . . ------- -..
~.. _-. ..~. .. e)-- -$- - - -- - -..- .- ‘

. , - ’
----f’] - ‘} ““- “]—-----

~-~—–-–-—––— T——

) 4.0
@2(~p)

8.0

–T.. ..–.. .–.—
1

,()-1

,()-;

d) field solve

colnll)unic;

-{ I]C

A-
.’

,’
,-@)-

.’ /-
,’,-

.’=/
.-’ ----—-- . ..= ‘-”’$’- $,.,.,., -+

[’1

—~---~-—–—r – -—-– T
4.0

l,0g2 (Np)
8.0

field
ul)datc

_ ~.. -------

.0

on

0

l’igure 4 colltinuc

#

s

10:

10’

“lime (SCC)

10

fl’’+c90
/’

‘l’tot / ’
/ ’

/
/’

e---- - - -,’-B ------, ?--- - --- -

m /’ 3’ e) c1
.; ,~! ’7. A..... f)

/ /’
/’ /’

/’ /’
/’ /’

/’ /’
/’ /’

/+
(9 -.,/0...

.. L><.< A CI. . .
-. . . —

.fi cl----- ~ f,)

I’al agoll
o

‘1’31)
l)clta

c)

/
/’ Tcoll

/’

—-- ————. - 7—

10’
Size

103 104

